Anisotropic Seeded Growth of Cu–M (M = Au, Pt, or Pd) Bimetallic Nanorods with Tunable Optical and Catalytic Properties

Shutang Chen,† Samir V. Jenkins,† Jing Tao,‡ Yimei Zhu,‡ and Jingyi Chen*†

†Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
‡Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States

Supporting Information

ABSTRACT: A general strategy to synthesize Cu–M (M = Au, Pt, or Pd) bimetallic nanorods has been demonstrated based on a seeded co-reduction method. In this approach, noble metal nanoparticles serve as seeds, and newly reduced Cu atoms are subsequently nucleated on one side of the seeds, resulting in Janus nanoparticles with an M-rich and a Cu-rich portion. The elongation of the particles originates from the site-specific deposition of Cu clusters on the Cu-rich side of these Janus nanoparticles by retarding reduction kinetics of Cu through galvanic replacement. Using this approach, Cu–M alloyed nanorods can be conveniently synthesized with tunable composition, crystal structure, and aspect ratio. These nanorods have also been demonstrated as a unique system for investigation of the structural and compositional effects on their optical and catalytic properties.

INTRODUCTION

Bimetallic nanostructures are emerging as a new class of attractive advanced materials with bifunctionality and enhanced catalytic properties as compared to their individual components.1—3 According to their atomic arrangement, they are generally classified into three categories: core–shell structures, heterostructures, and mixed structures (i.e., alloy or intermetallic). Morphological control of bimetallic nanoparticles is of great interest because their properties are strongly correlated with their size and shape in addition to composition. In the past decade, much progress has been made in the chemical synthesis of bimetallic nanoparticles with well-defined morphology using different solution-based synthetic methods, such as co-reduction, thermal decomposition, galvanic replacement, and seeded growth.3 Amid them, the seeded growth method is particularly attractive for the controlled synthesis of core–shell structures or heterostructures. This method was originated by Murphy4 and El-Sayed5 and first introduced by Yang and co-workers as a robust method for shape-controlled synthesis of bimetallic nanostructures.6 Since then, it has been applied to generate a variety of functional bimetallic nanostructures such as Ag–Au–Ag segmented nanorods,7 Pd–Pt and Pd–Rh nanodendrites,8–10 Pd–Au core–shell and dimer structures,11–13 Pt–Au heterostructures,14 and Au–Pd concave, convex, and other structures containing high-index planes.15–17 More recently, this method has been combined with co-reduction as a new route for preparation of more complex Au–Pd bimetallic nanostructures.18–20 In contrast to noble metals, the progress of seeded methods for bimetallic nanoparticles containing a 3d transition metal and a noble metal is rather limited due to the large difference of redox potentials.21 In this case, the noble metal served as the seed, and its morphology was adapted to form core–shell or alloyed nanostructures depending on the miscibility of the two solid phases and the reaction temperature.22–25 In this work, we report an anisotropic seeded growth of Cu-based bimetallic nanorods in which an inhomogeneous nucleation is introduced by controlling the reduction kinetics, thereby guiding the growth of nanocrystals in one direction and forming alloyed nanorods. Copper nanostructures possess unique electronic, optical, and catalytic properties suitable for applications ranging from electronics26,27 to photonics28–30 and heterogeneous catalysis.2,31,32 Alloying Cu with a noble metal has attracted considerable attention because of the synergistic effect of the binary system. For example, the localized surface plasmon resonance (LSPR) profile (i.e., position and width) varies with the Cu content in the alloyed nanoparticles, which is hard to predict theoretically using the dielectric constant calculated by the simple linear mixing rule.33,34 The catalytic performance of Cu–Au nanoparticles outperformed their individual components for oxidation of CO2, benzyl alcohol, and propene,2 as well as reduction of CO2.35 The catalytic reactivity and selectivity depend on the crystal structure (disordered vs ordered) and the shape (e.g., solid vs porous) of nanoparticles aside from the composition. In recent years, considerable knowledge has been contributed to the synthesis of these Cu-containing binary...
systems. Schaak and co-workers demonstrated a solution method to prepare Cu–Au alloyed and intermetallic nanoparticles by directly alloying the Cu and Au nanoparticle precursors or co-reducing their salt precursors at much lower than traditional metallurgical temperatures. Recently, Li and co-workers reported a seeded-based diffusion route by reducing Cu salt precursors in the presence of Au seeds to synthesize intermetallic Cu–Au nanoparticles with uniform size. Henkel et al. prepared alloyed nanorods of Cu–Au by co-reducing Cu and Au using a modified synthesis of Au nanorods. For other Cu-based alloys, the co-reduction method was optimized to obtain Pt–Cu nanorods and nanocubes, as well as Pd–Cu and tetrapods, using various combinations of surfactants in the synthesis. Despite these advancements, the morphological control of these bimetallic nanostructures remains to be challenging, and the underlying mechanism is still lacking. In this paper, we have developed a seeded co-reduction method using a two-step procedure in a simple system involving only aliphatic amine and metal salt precursors in the reaction. One-dimensional (1D) growth was induced by controlling the reduction kinetics of the secondary metal, resulting in the asymmetric nucleation on the noble metal seeds. Using this method, we have demonstrated that the Cu–M (M = Au, Pt, and Pd) alloyed nanorods could be synthesized with controllable composition and aspect ratio. At elevated temperature, these alloyed nanorods with a disordered face-centered-cubic (fcc) structure could be transformed to intermetallic nanorods with atomically ordered structure. The optical and catalytic properties of these nanostructures have been found to be governed by the compositional, structural, and morphological variables.

EXPERIMENTAL SECTION

Chemicals. Copper 2,4-pentanedionate (Cu(acac)2, 98%), copper chloride (CuCl2), copper acetate (Cu(CH3COO)2), hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O), octadecylamine (ODA, 98%), dodecylamine (DDA, 98%), p-nitrophenol, silver nitrate (AgNO3), platinum 2,4-pentanedionate (Pt(acac)2), palladium 2,4-pentanedionate (Pd(acac)2), and sodium borohydride (NaBH4) were purchased from Alfa Aesar. Oleylamine (OLA, 80–90%) was purchased from Acros. Tetradecylamine (TDA, 98%) was purchased from TCI. Oleylamine (OLA, 70%), hexadecylamine (HDA, 98%), and methoxypoly(ethylene glycol) amine (PEG-NH2) (MW = 5000) were purchased from Sigma-Aldrich. All chemicals were used as received unless specified otherwise.

Synthesis of Cu–M Bimetallic Nanorods. In a typical synthesis, OLA (20 mmol) and HAuCl4·3H2O (0.05 mmol, 19.7 mg) were added to a 25 mL three-neck flask equipped with a magnetic stir bar. For DDA, TDA, HDA, or ODA, equimolar amounts of amine were used to replace OLA. Argon was blown over the reaction mixture for 10 min to remove O2. The reaction mixture was heated to 160 °C, and the color of the solution mixture changed from yellow (50–65 °C) to colorless (65–115 °C), pale pink, and ruby red (115–120 °C), indicating that the Au(III) was reduced to Au(I) and then Au(0). The reaction was kept at 160 °C for 20 min and then cooled to 60 °C. Without separation, Cu(acac)2 (52.4 mg, 0.2 mmol) in 1 mL of OLA was then injected to the reaction mixture, followed by heating to 180 °C, which was maintained for another 20 min. For CuCl2 or Cu(CH3COO)2, equal amounts of Cu precursor in 1 mL of OLA were used to replace Cu(acac)2. For synthesis of CuAu intermetallic nanorods, the reaction mixture was further heated to 280 °C and kept at this temperature for another 20 min. After the reaction, the product was purified by adding toluene and centrifuging at 3300 rpm for 2 min to remove excess reactants and surfactants.

To control the aspect ratio of the nanorods, the concentration of HAuCl4·3H2O was varied while the mole ratio of Au and Cu precursors was kept at 1:4. When the concentration of HAuCl4·3H2O was reduced from 0.05 to 0.02, 0.01, and 0.005 M, the aspect ratio of the CuAu nanorods was increased from 1:1 to 2:1, 3:1, and 4:1 under the same reaction conditions as described previously.

To control the composition, the mole ratio of Au and Cu precursors was reduced from 1:4 to 1:2 for CuAu nanorod synthesis, while the Au precursors were replaced by Pt(acac)2 and Pd(acac)2 for Cu2Pt and Cu3Pd nanorod syntheses, respectively.

Phase Transfer of Cu3Au Nanostructures from Organic Phase to Aqueous Phase. PEG-NH2 (2.0 µmol, 10 mg) was dissolved in 15 mL of CHCl3 in a 25 mL flask. After stirring for ~10 min in an ice bath, Cu3Au nanostructures (5–6 mg) in 2.0 mL of toluene were added dropwise to the solution. The reaction solution was degassed with argon for 5 min and allowed to stir overnight in the dark. After that, the PEGylated nanostructures were purified by first precipitating with hexane and sequentially washing by ethanol and water. The products were finally dispersed in 2 mL of deionized water for the catalytic studies.

Catalytic Studies. In a typical measurement, aqueous solutions of p-nitrophenol (1.4 mM) and NaBH4 (0.42 M) were freshly prepared as separate stock solutions. Deionized water (7.0 mL) was mixed with 0.5 mL of p-nitrophenol stock solution. The color of the solution changed from colorless to yellow as soon as 1.0 mL of NaBH4 stock solution was added. Then, 0.2 mL of PEGylated Cu3Au nanorod catalysts was added into the system with a final concentration of 2.5 × 1010 rods/mL. Immediately after mixing, 2.0 mL of the reaction solution was quickly transferred into a quartz cuvette, and the absorbance spectra were recorded using UV–vis spectrometer over a certain period of time. The nanorods have roughly the same dimensions (26.7 × 9.5 nm), and the total surface area for nanorods in each solution is 2.2 × 1013 nm²/mL. To keep the concentration of Au atoms (8.38 × 10²⁸ mol/mL) roughly on the same scale for all catalysts, 0.5 mL of the nanoparticle catalysts was used with a final concentration of 3 × 10¹¹ particles/mL. The nanoparticles have roughly the same diameter (9.5 nm), and the total surface area for nanorods in each solution is 8.5 × 10¹⁰ nm²/mL.

Instrumentation. Transmission electron microscopy (TEM) images were captured using a JEOL 100cx microscope with an accelerating voltage of 100 kV. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images, high-resolution TEM (HRTEM) images, and energy-dispersive X-ray (EDX) mapping were obtained using a JEOL 2100F microscope with an acceleration voltage of 200 kV, equipped with heating and cooling in situ TEM sample holder. X-ray diffraction (XRD) patterns were acquired using a Rigaku MiniFlex X-ray diffractometer equipped with Cu Ka radiation source operated at 30 kV/15 mA. The concentrations of Au and Cu were determined using a GBC 932 atomic absorption (AA) spectrometer. UV–vis spectra were taken on an HP 8453 UV–vis spectrophotometer.

8925 dx.doi.org/10.1021/jp4013653 J. Phys. Chem. C 2013, 117, 8924–8932
RESULTS AND DISCUSSION

Figure 1 illustrates the evolution of noble metal seeds (M = Au, Pt, or Pd) to Cu$_x$M$_{1-x}$ nanorods using a two-step procedure involving seed-mediated co-reduction in aliphatic amine, such as C$_n$H$_{2n+1}$NH$_2$, $n \geq 12$, or oleylamine (OLA). In this method, the amine serves as a coordinating ligand, reducing agent, capping ligand, and solvent.23,41,42 Initially noble metal nanoparticles were formed as seeds by reducing their amine complex, M(I) or M(II), in the absence of Cu precursors. After Cu precursor, Cu(II), was injected into the reaction mixture, they were reduced to Cu$_0$ by the amine and subsequently nucleated on the surface of the seeds. The Cu(II) could be adsorbed and reduced on the seed surface,24 or it could be reduced in solution before nucleation on the seed surface.43 To introduce anisotropic growth, it is essential to convert isotropic seeds to Janus nanoparticle intermediates containing an M-rich and a Cu-rich side. This anisotropy can be achieved by controlling the reduction kinetics of Cu. Relatively slow reduction kinetics should be maintained to avoid uniform nucleation of Cu around each seed;44−46 however, the reduction of Cu needs to overwhelm the galvanic replacement between M(I)/M(II) and Cu0 as well as the diffusion between M and Cu. Once the Janus nanoparticles form, the newly formed Cu0 can then preferentially deposit on the Cu-rich side because of the large lattice mismatch between Cu ($a = 3.61$ Å) and M ($a = 4.07$, 3.92, and 3.89 Å for Au, Pt, and Pd, respectively). As a result, growth was driven in one direction, forming rod-shaped nanoparticles. During the thermal annealing process, the atoms gradually diffuse from one position to another within the nanorods, resulting in a mixed alloy composition that adopts a disordered fcc structure.

![Figure 1](https://example.com/figure1.jpg)

Figure 1. Schematic illustration of the seeded co-reduction strategy for the synthesis of bimetallic Cu-based nanorods in which noble metal (M) seeds were formed in situ, followed by co-reducing Cu and M precursors in the second step. The 1D growth was driven by asymmetrically depositing Cu on the M seeds, and the diffusion led to the formation of alloy.

![Figure 2](https://example.com/figure2.jpg)

Figure 2. TEM images of the particles in aliquots collected from a seeded co-reduction synthesis of Cu$_3$Au nanorods at different time points: (A) the Au seeds formed in situ and (B−D) 1, 5, and 20 min after the Cu precursors had been added into the reaction mixture, respectively. The inset of (A) shows HRTEM of an individual Au seed.

![Figure 3](https://example.com/figure3.jpg)

Figure 3. Structural characterization of the aliquot samples corresponding to the samples in Figure 2: (A) XRD and (B−E) HAADF-STEM. (F) EDX mapping of Au element in the seed sample in (B). (G−I) EDX mapping of samples in (C, D) with four panels: bright-field image, mapping of Cu (green), mapping of Au (red), and their overlaid image. The scale bars in the HAADF-STEM images are 20 nm while the scale bars in the bright-field images of EDX mapping are 5 nm.

![Figure 4](https://example.com/figure4.jpg)

Figure 4. (A) UV−vis−NIR spectra of Cu$_3$Au nanorods with LSPR peaks at 572, 643, 716, and 781 nm as aspect ratio increases from 1:1 to 4:1. The insets are the corresponding TEM images. (B) Plot of the LSPR peak as a function of aspect ratio of the Cu$_3$Au nanorods. The red line is the linear fit of the solid-square experimental data ($y = 503 + 70x; R = 0.999$). (C) XRD characterization of the Cu$_3$Au nanorods corresponding to the samples in (A), suggesting that all of them possess a disordered fcc phase. (D) Plot of aspect ratio of the Cu$_3$Au nanorods as a function of the Au precursor concentration (mole ratio Au/Cu = 1:4). The red line is the exponential fit of the solid-square experimental data ($y = 0.88 + 4.39e^{-0.36x}; R = 0.997$). The error bars of the aspect ratios are propagated from the uncertainties of length and width of the nanorods.
This approach was initially demonstrated in the Cu–Au system to generate Cu₃Au alloyed nanorods. In a typical synthesis, the Au precursor was partially reduced to generate the initial seeds before addition of a Cu precursor. The color of the reaction mixture changed from golden yellow to colorless and then pink, indicating the formation of Au(I) amine complexes together with Au nanoparticles. Without purification, a Cu precursor was introduced into the reaction mixture in the form of Cu(II) amine complexes. The mechanism was elucidated by examining aliquots taken from the reaction mixture at different time points. The Au seeds, which were formed after the reaction had proceeded at 160 °C for 20 min, were multiply twinned nanoparticles bounded by {111} facets with a diameter less than 10 nm (Figure 2A). After the addition of Cu(II) amine complexes, the reaction temperature was raised to 180 °C to facilitate the reduction. One minute later, most of the seeds were found to be elongated, and they grew further along one direction until \(t = 5 \) min (Figure 2B,C). At \(t = 20 \) min, the elongated nanoparticles had transformed into nanorods with dimensions of 25.2 ± 1.5 × 8.5 ± 1.2 nm (Figure 2D). To validate the seeded co-reduction process, the reaction was decoupled into two successive steps while keeping the same reaction conditions. The Au seeds were isolated and purified to remove the excess Au precursors at the end of the first step with a yield of ∼50%. Subsequently, these seeds...
were redispersed in OLA and heated to 60 °C. The Cu and Au precursors (8:1 ratio) were simultaneously added to the reaction mixture and co-reduced to yield Cu3Au nanorods (Figure S1A,C). In the control experiment, when only Cu precursor was added to the mixture in the second step, Au/CuAu3@Cu core−shell nanoparticles were found as final products (Figure S1B,D). Note that the Cu shell was quickly oxidized to CuO in air.

The structures of each sample obtained at different stages of a synthesis were analyzed by XRD (Figure 3A). The mole fraction of Cu and Au in the alloys was analyzed using Vegard’s law, which holds a linear relation between the crystal lattice parameter (a) of an alloy and the mole fraction of the constituent elements (x). During the synthesis, the pure fcc Au phase (a = 4.07 Å) at t = 0 min evolved to the single-phase disordered fcc Cu3Au alloy (a = 3.75 Å) at t = 20 min. The intermediates at t = 5 or 10 min were indexed as mixtures of Au-rich and Cu-rich solid solutions with multiple fcc phases, as indicated by the broadened XRD patterns with an a value between those of Au and Cu. The reaction process was also monitored by UV−vis spectra with the LSPR maximum gradually shifting from 524 nm to 562 and 681 nm (Figure S2).

To reveal the morphology and composition of individual nanostructures, aliquots from a synthesis were further examined using HAADF-STEM, as shown in Figure 3B−E. Because the thickness of the sample is almost uniform along the entire nanorod, the HAADF-STEM images can be interpreted based on mass contrast with the Au-rich area brighter than the Cu-rich portion. Together with the compositional mapping by EDX (Figure 3F−I), the structural evolution during the synthesis is evident that the initial Au seeds become Janus structures with one side rich in Au and the other rich in Cu and then grow to alloyed nanorods. Note that the contrast variation varied the precursor concentrations while keeping their mole ratio constant. Adjusting only the concentration allowed the aspect ratio to be tuned without affecting the final composition. A decrease in Au precursor concentration led to decreases in both size and concentration of the Au seeds and thus an increase in aspect ratio for the resultant nanorods. A mole ratio of 1:4 for the Au and Cu precursors yielded nanorods with an Au:Cu ratio of 1:3. The aspect ratio of Cu3Au nanorods increased from 1:1 (12.7 ± 2.5 nm) to 2:1 (18.0 ± 2.6 × 8.9 ±
1.2 nm), 3:1 (28.8 ± 2.3 × 10.6 ± 1.6 nm), and 4:1 (33.7 ± 4.4 × 8.1 ± 0.9 nm) with decreasing concentration of Au precursor (Figure 4A). The LSPR peak of the Cu3Au nanorods was shifted linearly toward longer wavelength from 572 to 643, 716, and 781 nm with increased aspect ratios (Figure 4B). The Cu3Au fcc phase of each sample was confirmed by XRD analysis (Figure 4C). Surprisingly, it was found that the plot of aspect ratio (y) as a function of concentration (x) could be well fitted by an exponential decay, \(y = 0.88 + 4.39e^{-0.86x} \) (Figure 4D). Mathematically, a maximum aspect ratio is found at x = 5.28:1 (y → 5.28) as the concentration of Au precursor approaches 0 (x → 0). In practice, it is hard to increase the aspect ratio of nanorods beyond 4:1 by further lowering the precursor concentration under these experimental conditions because no nucleation occurs at extremely low concentration of reduced atoms.53

The disordered fcc phase was converted to ordered intermetallic phase by further annealing the alloyed Cu3Au nanorods at 280 °C in solution. This disorder–order transition temperature is similar to that observed in the previous study.36 Figure 5A–C shows structural characterization of the atomically ordered Cu3Au nanorods with dimensions of 26.9 ± 3.0 × 12.7 ± 1.4 nm. The XRD pattern clearly shows the sharp peaks of superlattice (100) and (110) reflections, suggesting an ordered cubic Cu3Au phase, where the Cu atoms are at the face centers and Au atoms occupy the corners in one unit cell, with a = 3.77 Å (\(\alpha_{Cu} = 3.75 \) Å).54 The electron diffraction (ED) pattern from an individual nanorod in the inset showed two sets of spots viewed along the [111] and [110] zones, respectively. The spots of (110) reflections, which are forbidden from disordered fcc Cu3Au alloy, were clearly observed on the ED pattern (as marked by the arrows) of an ordered phase. The analysis of ED and fast Fourier transform (FFT) of the HRTEM image suggested that the atomically ordered cubic Cu3Au nanorod grew along (110) direction, with two single-crystal domains being assembled along the longitudinal axis. During the disorder–order phase transition, the LSPR peak of the nanorods was blue-shifted from 712 to 614 nm (Figure 5D). This shift could be attributed to the decrease in aspect ratio during thermal treatment and/or the change of electronic structure due to phase transition.55

The disorder–order transition of individual Cu3Au nanorods was further examined by in situ TEM equipped with a heating and cooling stage. No change of crystal structure was found by cooling from 25 °C (Figure 6A) to 262 °C (Figure 6D); that is, the nanorod remained disordered. Heating the sample from 25 °C to 327 °C (Figure 6B) transformed the disordered phase to the ordered phase. Further heating to 497 °C (Figure 6C) above the critical temperature (390 °C for the bulk)56 reverted the ordered phase back to disordered phase, indicated by the disappearance of the (110) reflection spots. When the ordered phase was slowly cooled back to 25 °C, the nanorod underwent the phase transition through an equilibrium process and the well-ordered phase was kept uniformly at 25 °C (Figure 6E). On the other hand, when the disordered phase was rapidly cooled to 25 °C, the nanorod was preserved with short-range ordered structure, shown by the weak and diffuse (110) reflection spots in the ED pattern (Figure 6F). The disorder–order transformation was reversible, and either phase could be obtained repeatedly without significant alteration of the rod-shaped morphology; however, a decrease of aspect ratio was observed after heat treatment (Figure S4).

Intermetallic CuAu nanorods can also be synthesized by adjusting the mole ratio of Au to Cu precursors to 1:2 (Figure 7). All the peaks in the XRD pattern of the CuAu nanorods (17.7 ± 4.2 × 9.9 ± 1.9 nm) were indexed to the pattern expected for an ordered tetragonal CuAu phase.53 Similar to the case of Cu3Au, two sets of spots were observed in the ED pattern from an individual CuAu nanorod, one recorded from the [111] zone and the other viewed from the [110] zone, indicating that each CuAu nanorod was made of two single-crystal domains. An interface was clearly observed in the middle of the two domains as marked by arrows in the HRTEM. Based on the ED and FFT analyses, these CuAu nanorods were found to grow along the longitudinal (110) direction. The intermetallic CuAu nanorod could also be transformed from the disordered CuAu nanorods through heat treatment. In this case, the LSPR peak of the resultant nanorods was blue-shifted from 592 to 550 nm, indicating a decrease in aspect ratio during the annealing process.

This approach can be extended to other Cu-based bimetallic systems, for instance, Cu–Pt or Cu–Pd (Figure 8A,B). In these cases, the Au seeds were replaced by Pt or Pd seeds, respectively, while all other conditions were kept identical to those for the Cu3Au nanorod synthesis. XRD analysis confirmed the crystal structures and compositions were disordered Cu3Pt and Cu3Pd alloys, respectively (Figure 8C,D). The yield of elongated nanoparticles in both samples was around 50%. The relatively low yield could be attributed to the lower redox potential of Pt(II)/Pt0 or Pd(II)/Pd0 pairs relative to the Au(I)/Au0 (11%) pair decreased lattice mismatch of Cu/Pt (7.9%) or Cu/Pd (7.8%) compared to Cu/Au (11%). Lowering the redox potential effectively slows the oxidation of Cu in the second step by reducing the loss of Cu0 resulting from the galvanic replacement reaction; consequently, the reduction rate of Cu in the Cu–Pt or Cu–Pd system was faster than that in the Cu–Au system. A faster reduction rate favored production of core–shell particles over Janus particles during nucleation of Cu on the seeds. Switching to Ag nanoparticles as seeds, the overall rate of Cu reduction became faster because the remaining Ag(I) in the reaction could not effectively oxidize Cu0. As a result, the product was dominated by Ag@Cu core–shell nanoparticles (Figure S5). Note that Cu is quickly oxidized to CuO in air, as indicated in the XRD analysis. As compared with Cu3Au, the intensity of LSPR peaks in the visible region was significantly decreased for the Cu3Pt and Cu3Pd nanorods possibly due to the damping effect of the Pt and Pd metal in the alloys (Figure 8E,F).57,58

The catalytic activity of metallic nanoparticles is strongly correlated to their size, shape, and crystal structure. To evaluate the structure–activity relationship, different types of Cu3Au bimetallic nanostructures were used to catalyze the reduction of...
measurements. When NaBH₄ is in excess, the reaction becomes
of Au atoms of each catalyst was held constant across catalytic
aqueous solution, 59 the Cu₃Au nanostructures were phase
variation of
catalysts were close to twice as e
nanostructures. For the same crystal phase, the rod-shaped
nanostructures are more active than that of the disordered
catalysts are listed in Table 1. For both nanorods (NRs) and
nanoparticle catalysts despite the 4-fold decrease in total
surface area. The enhanced catalytic activity of Cu₃Au nanorods
was possibly due to the di
ligand density and/or the structural reconstruction.59

■ CONCLUSION
The Cu-based alloyed nanorods have been successfully synthesized by controlling the reduction kinetics of a seeded co-reduction method. As demonstrated in Cu–Au system, the aspect ratio and composition of the alloyed nanorods could be controlled by adjusting the concentration of the Au seeds and altering the precursor ratio, respectively. The LSPR peak of the Cu₃Au nanorods could be readily tuned over the spectrum from visible to infrared. Additionally, the Cu₃Au nanostructures have demonstrated different catalytic activities for the reduction of p-nitrophenol in the order of ordered Cu₃Au nanorods > disordered Cu₃Au nanoparticles > disordered Cu₃Au nanoparticles. The asymmetric seeded growth was extended to other Cu-based binary systems, specifically Cu–Pt and Cu–Pd. This method may represent a robust approach to produce a variety of binary, rod-shaped nanostructures with a broad range of tunable compositions and properties.

■ ASSOCIATED CONTENT
Supporting Information
Figures S1–S6. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail chenj@uark.edu Ph +1 479-575-6203.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported in part by the Ralph E. Powe Jr. Faculty Enhancement Award, funds from Arkansas Bioscience Institute, and startup funds from the University of Arkansas to J.C. The work at BNL was supported by the U.S. Department of Energy (Basic Energy Sciences) and by the Materials Science and Engineering Division under Contract DE-AC02-98CH10886 and through the use of CFN.

■ REFERENCES

(42) Ortiz, N.; Skrabalak, S. E. Manipulating Local Ligand Environments for the Controlled Nanoparticle Mn LRII Nanocrystals and Their Assembly into Nanodendrimers. Angew. Chem., Int. Ed. 2012, 51, 11757−11761.

